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10 Abstract

11 The Neotropics are a global biodiversity hotspot that has undergone dramatic land use changes 

12 over the last decades. However, a temporal perspective on the continental-wide distributions of 

13 species in this region is still missing. To unveil it, we model the entire area of occupancy of five 

14 Neotropical carnivore species at two time periods (2000-2013 and 2014-2021) using integrated 

15 species distribution models (ISDMs) in a Bayesian framework. The carnivores are the jaguarundi 

16 (Herpailurus yagouaroundi), margay (Leopardus wiedii), maned wolf (Chrysocyon brachyurus), 

17 tayra (Eira barbara), and giant otter (Pteronura brasiliensis). We mapped the temporal change, 

18 the areas where gains and losses accumulated for all species (hotspots of change) and calculated 

19 the spatial and temporal dissimilarity. We show that most carnivore species have declined their 

20 area of occupancy in the last two decades, that diversity has decreased over time, and that species 

21 composition has diverged (i.e., dissimilarity among assemblages increased). By looking at 

22 different facets of biodiversity simultaneously, we revealed that the ongoing changes in land use 
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23 in the Neotropical region have been coupled with a transformation in the status of biodiversity 

24 there.

25

26 Keywords: biodiversity change, geographic range, dynamic patterns, hotspots of change, 

27 integrated species distribution models, Bayesian, species richness.

28

29 1 Introduction

30 The Neotropics are biologically megadiverse (Grenyer et al., 2006; Raven et al., 2020) but also 

31 face one of the most significant degradations of natural areas (Barlow et al., 2018; WWF, 2020). 

32 The main land transformations are related to converting native grasslands and forests into 

33 farming lands (e.g., soybean plantations), pastures for cattle ranching, and exotic-tree forestry 

34 (Baeza et al., 2022; Curtis et al., 2018; Pompeu et al., 2023; Song et al., 2021; Souza et al., 

35 2020). Likely as a consequence, there have been reports of defaunation in the Neotropics 

36 (Bogoni et al., 2020; Emer et al., 2019; Magioli et al., 2021). While these studies have 

37 contributed valuable insights, they are either geographically limited in their extent (e.g., local to 

38 the Atlantic forest, Emer et al., 2019, or Caatinga, Moura, Oliveira, et al., 2023), temporally too 

39 broad (e.g., comparing current distributions with late Quaternary periods, Sandom et al., 2014), 

40 or they rely on forecasts or hindcasts rather than on direct empirical comparisons (e.g., using 

41 IUCN range maps, Bogoni et al., 2020). A data-driven study with a continental extent that aligns 

42 with the recent degradation of natural areas (i.e., last 20 years) is missing. 

43

44 At the large continental extent, a fundamental property of a species is its geographical 

45 range (Brown et al., 1996): the set of limits to the spatial distribution of a species (e.g., 
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46 boundaries within which a species occurs) (Gaston, 2003). We can stack ranges of multiple 

47 species to get continental maps of species diversity (Mittermeier et al., 2011; Myers et al., 2000; 

48 Roll et al., 2017), and we can use them to study the differentiation of species composition, the 

49 so-called beta diversity (Anderson et al., 2011; Koleff et al., 2003). A joint knowledge of these 

50 properties (i.e., species ranges, species diversity, and beta diversity) gives a holistic picture of the 

51 state of nature at large scales. While a map of species richness can show biodiversity hotspots, 

52 considering it jointly with the identity and area of occupancy of each species can reveal centres 

53 of endemism, as well as areas with unique species composition. In the Neotropics, at the 

54 resolution of 100 x 100 km, species ranges for vertebrates have long been available (Schipper et 

55 al., 2008) and analysed (Coelho et al., 2023). The problem is that all of this is completely static. 

56 We still don’t know how it all changes in time, even though the knowledge of the temporal 

57 dynamics of species’ occupancy (are species expanding or shrinking?), diversity (are sites losing 

58 or gaining species?), and beta diversity (is there biotic homogenisation or differentiation?) is 

59 potentially critical in the face of the ongoing land transformation in the Neotropics. 

60

61 The main reason for the lack of knowledge about continental-wide temporal dynamics is 

62 the amount and quality of data in the region (Hortal et al., 2015). Datasets collected/observed at 

63 the same location at different points in time over large spatial extents, such as national gridded 

64 atlases, are practically non-existent. This is a cross-cutting issue, as it limits our capacity to 

65 address the biodiversity knowledge gap, identify threats to biodiversity, and take evidence-based 

66 decisions and actions. 

67 Data about species distribution come in three forms (Kissling et al., 2018): 
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68 1. First, presence-only point occurrences are the most common type of observation 

69 data. Contributing these using smartphones through community science initiatives has become 

70 popular in the region (Pocock et al., 2018). The iNaturalist initiative, for instance, has nine 

71 national sites in the region (Mexico, Guatemala, Costa Rica, Panama, Colombia, Ecuador, Chile, 

72 Argentina, and Uruguay). The point occurrences that this platform hosts are of particular 

73 importance in such an under-sampled region, as they often cover a larger portion of area than 

74 structured survey data. However, incidental presence-only observations are usually spatially, 

75 temporally, and taxonomically biased (Oliveira et al., 2016). 

76 2. Second, high-quality biodiversity data, for which we know the exact sampling 

77 effort and methods and where both species’ presences and absences are recorded, are rarely 

78 shared through the GBIF initiative. Examples are data from camera traps (Steenweg et al., 2017), 

79 whose use in Latin America is increasing rapidly (Delisle et al., 2021). Despite previous efforts 

80 to collate camera trap surveys in the region (Ahumada et al., 2011), plenty of heterogeneous data 

81 still can be mobilised (Kühl et al., 2020; Scotson et al., 2017). 

82 3. Third, expert range maps (IUCN, 2023) are a major data source for 

83 macroecological studies in this region. They represent aggregated expert knowledge to estimate 

84 the broad boundaries of areas where a species is expected to be found (Jetz et al., 2012). They 

85 are built using data on the species’ evolutionary history, habitat preferences, current occurrences 

86 and local knowledge. In many regions, such as the Neotropics, they can represent the only 

87 available knowledge of the distribution of a species. However, they only indicate the absence of 

88 a species beyond range boundaries, not its exact sites of presence within the range. Further, they 

89 contain large spatial and temporal uncertainties, which restricts their usefulness in tracking 

90 changes in species distributions over time.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4916634

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



91

92 A new approach to addressing the issues of data incompleteness and heterogeneity is 

93 using Integrated Species Distribution Models (ISDMs) (Isaac et al., 2020). ISDMs usually 

94 assume that the true but unobserved distribution of a species (the spatial locations of individuals) 

95 can be modelled by a Poisson point process conditional on, for instance, environmental 

96 covariates. This true distribution can then be sampled through different observation processes, 

97 generating the data we observe (presence-absence, presence-only, or abundance). The parameters 

98 affecting the intensity of the resulting point pattern can then be estimated using the joint 

99 likelihood for the different data types while accounting for the specific ways they were observed. 

100 Thus, ISDMs take advantage of the strengths of different data types, and they can also explicitly 

101 account for their limitations, like imperfect detection, sampling bias, uneven effort, and varying 

102 survey areas (Fletcher Jr. et al., 2019; Miller et al., 2019; Pacifici et al., 2017). Most ISDMs 

103 implementations are fitted in a Bayesian framework, which has the advantage of propagating the 

104 uncertainties associated with each data type into the predictions and parameter estimates. 

105 However, using ISDMs to assess the range dynamics of multiple species at continental scales in 

106 regions with limited data availability is still rare (e.g., Grattarola et al., 2023).

107

108 The aim of this study is to model temporal change in the geographic distribution of eight 

109 mammal carnivores over the entire Neotropics using a recently developed ISDM (Grattarola et 

110 al., 2023). We chose ISDMs because, unlike any other correlative SDM (e.g., MaxEnt), they 

111 allow us to integrate different data types, account for varying sample area, sampling intensity and 

112 spatial autocorrelation, and include a temporal dimension (Schank et al., 2017). We estimate the 

113 geographic range of species in two time periods, 2000-2013 and 2014-2021, quantify the species 
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114 occupancy changes, and assess the following questions: i) how have species’ geographic ranges 

115 changed over time, contracted vs. expanded, where and in which direction? ii) how has the 

116 species diversity changed? (i.e., species richness) and iii) if dissimilarity among assemblages has 

117 decreased (i.e., biotic homogenisation) or increased (i.e., biotic differentiation)?

118

119 2 Material and methods

120 We estimated changes in the geographic distribution of species using an ISDM that integrated 

121 camera trap survey data with GBIF point occurrences, considered different covariates for each 

122 species and accounted for sampling effort and spatial autocorrelation. We quantified the 

123 occupancy levels (i.e., probability of occurrence) for each species over time and calculated the 

124 beta diversity for each time period and the temporal change in spatial beta diversity. 

125

126 2.1 Species data, observation effort and environmental predictors

127 The eight species included in the study are the jaguarundi Herpailurus yagouaroundi (É. 

128 Geoffroy Saint-Hilaire, 1803), ocelot Leopardus pardalis (Linnaeus, 1758), margay Leopardus 

129 wiedii (Schinz, 1821), coati Nasua nasua (Linnaeus, 1766), crab-eating fox Cerdocyon thous 

130 (Linnaeus, 1766), maned wolf Chrysocyon brachyurus (Illiger, 1815), tayra Eira barbara 

131 (Linnaeus, 1758), and giant otter Pteronura brasiliensis (E. A. W. Zimmermann, 1780). We 

132 chose these species because they had sufficient data and no taxonomic issues (e.g., recent 

133 taxonomic revision) and to have a balanced representation of the Carnivore biota as they fall 

134 under different conservation categories and distribute from south to north of the Neotropics. 

135 Based on model performance, we failed to model three of these species (coati, crab-eating fox, 

136 and ocelot) and thus they are not included in the posterior analyses (see Results). 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4916634

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



137 Since we aimed to compare the distributional change in time, we divided the data into 

138 two time periods (time1: 2000-2013 and time2: 2014-2021), the minimum possible to see 

139 changes in time given the low number of data points we had for some species (Table 1). The 

140 temporal span was chosen considering most of the data available were collected from 2000 

141 onwards. The temporal division was chosen to be able to represent, on average, 50% of the data 

142 (presence-absence and presence-only) in each period. We expected to have similar uncertainties 

143 of distributions due to similar sample sizes in each time period while retaining sufficient data to 

144 produce the best estimate of the current distribution without having convergence issues. 

145

146
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147 Table 1. Species data. Presence-only and presence-absence data (in total and by time period), and covariates 

148 used for the eight carnivore species. The IUCN category is shown for each species (LC: least concern, NT: 

149 near threatened, EN: endangered). For an explanation of the covariate abbreviations, see Table A.1.

150

Species IUCN status
PO 
data

time1 | 
time2

PA 
data

time1 | 
time2 covariates

Herpailurus 
yagouaroundi 
(jaguarundi)

Least concern 
(LC)

804 216 | 588 602 290 | 312 npp, 
elevation, 
bio7, bio15

Leopardus pardalis 
(ocelot)

Least concern 
(LC)

2590 378 | 2212 2963 1584 | 
1379

npp, tree, 
bio10, bio17

Leopardus wiedii 
(margay)

Near 
Threatened 
(NT)

549 101 | 448 720 393 | 327 npp, nontree, 
bio7, bio10

Nasua nasua 
(coati)

Least concern 
(LC)

1978 465 | 1513 1906 878 | 1028 nontree, npp, 
bio10, bio13

Cerdocyon thous 
(crab-eating fox)

Least concern 
(LC)

3003 1112 | 
1891

1992 886 | 1106 urban, tree, 
bio3, bio4

Chrysocyon 
brachyurus (maned 
wolf)

Near 
Threatened 
(NT)

475 335 | 140 386 174 | 212 elev, grass, 
bio2, bio14

Eira barbara 
(tayra)

Least concern 
(LC)

1740 294 | 1446 1837 917 | 920 npp, nontree, 
bio10, bio17

Pteronura 
brasiliensis  (giant 
otter)

Endangered 
(EN)

199 103 | 96 21 15 | 6 wetland, 
woodysavan
na, bio3, 
bio5
 

151

152
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153

154 Figure 1. Data for the eight carnivore species used in the integrated species distribution model for the 

155 entire study period. Top: Herpailurus yagouaroundi, Leopardus pardalis, Leopardus wiedii, and Nasua 

156 nasua, and bottom: Cerdocyon thous, Chrysocyon brachyurus, Eira barbara, and Pteronura brasiliensis. (A) 

157 Presence-absence camera trap data from (Nagy-Reis et al., 2020) and other sources, with presences in red and 

158 absences in dark grey. (B) Presence-only point observations from (GBIF.org, 2023) are shown in blue. The 

159 IUCN expert map is shown in light grey for each species (IUCN, 2023). The ISDM models of Leopardus 
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160 pardalis, Nasua nasua, and Cerdocyon thous did not converge and thus were not included in the analyses (see 

161 Results).

162

163 Presence-absence data (Table 1, Figure 1). For all eight species, we extracted these from two 

164 workflows: First, we used (Nagy-Reis et al., 2020) database of neotropical carnivores records. 

165 We kept camera trap surveys (with detection and non-detection values) with geographic 

166 coordinates, information about the study sampling area, starting and ending month and year of 

167 the study, and reported the sampling effort (i.e., the number of active camera trap days). To 

168 enhance this data source, we collated 32 extra camera trap surveys/datasets considering the same 

169 characteristics (see Table A.2 for a complete list of sources). For each survey, we created a 

170 buffer polygon using the latitude and longitude of the survey as centroid and either the study area 

171 or the latitude/longitude precision for the studies at the sampling level of “area” as the expected 

172 area of the polygon (see the metadata in Nagy-Reis et al., 2020 for more details on these 

173 definitions). Individual polygons were then overlapped and combined into ‘blobs’ for each time 

174 period. Finally, absences were generated for each species in those blobs where the species was 

175 not recorded. For each blob, we calculated the total surface area, the time span of the records, 

176 and the effort in camera trap days.

177

178

179 Presence-only data (Table 1, Figure 1). We downloaded these from GBIF (GBIF.org, 2023), 

180 filtering all records with geographic coordinates and no spatial issues for 2000-2021. We further 

181 filtered these data by removing records with coordinate precision smaller than three decimal 

182 places (i.e., 0.001) and coordinate uncertainty greater than 25,000 m. To these data, we added 

183 records from (Nagy-Reis et al., 2020) that were of the type ‘Count data’ and had been surveyed 
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184 using the following methods: 'Opportunistic', 'Line transect', 'Active searching', 'Roadkill', 

185 'Museum'. Finally, we eliminated duplicates considering independent records as individuals 

186 recorded on different dates, and latitude and longitude locations. For each time period (time1 and 

187 time2), we aggregated the data to 100 x 100 km resolution grid cells (Lambert azimuthal equal-

188 area projection; centre latitude 0º S and centre longitude 73.125º W) covering the entire 

189 Neotropics. We chose 100 km as a compromise between computational efficiency and producing 

190 meaningful species range descriptions at a continental scale. To account for the uneven sampling 

191 effort between both time periods (i.e., more data are shared through GBIF over time), we 

192 calculated the ratio of the number of records between time1 and time2, using all the data 

193 available in GBIF for the eight species. We found, on average, 27% more records in the second 

194 period. This number was used to calibrate the predictions in time2 (see section Model below).

195

196 Expert range maps. As an additional source of information, we used expert-drawn IUCN Red 

197 List range maps (IUCN, 2023). Although our models (see below) have the flexibility to predict 

198 absences in otherwise suitable environments, they may predict (false) presences in unlikely areas 

199 for the species. In this context, range maps are an ideal source of information, as they are poor at 

200 predicting where exactly a species occurs within the range but reliably identify areas outside of 

201 the range where the species is absent. Specifically, we included the distance to the expert range 

202 maps in the model (Merow et al., 2016). Most of the IUCN range maps were generated around 

203 2010 (2008-2016), so they do not include areas where the species could have recently colonised. 

204 To account for this, we used a value of 0 inside the range map (thus, predictions are not affected 

205 within the range) and a positive value outside the range given by the distance to the edge of the 
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206 range map. This is a different approach from Merow et al. (2016), who use range maps as offsets 

207 with a fixed pre-defined coefficient, while we estimate that coefficient from the data.

208

209 Variables describing observation effort. Thinning variables were used to explain the 

210 observation process of the presence-only records (i.e., to adjust the presence-only data for 

211 sampling effort). For each 100 x 100 km grid cell, we used data on accessibility from urban areas 

212 based on travel time (Weiss et al., 2020) and the country of origin of the record. We expected 

213 that highly accessible grid cells would have more point records than inaccessible grid cells and 

214 that differences would also vary among countries, as they have different data-sharing capacities 

215 and citizen-science levels of participation (Carlen et al., 2024).

216

217 Environmental predictors. For both grid cells and blobs, we extracted the 19 bioclimatic 

218 variables: elevation (SRTM), land cover, net primary production (NPP), percentage of tree cover 

219 and percentage of non-tree vegetation. See Table A.1 for more info about each covariate’s 

220 source, resolution and time span. Land cover was processed to extract the following classes 

221 independently: urban and built-up lands, barren, water bodies, savannas, woody savannas, 

222 permanent wetlands, and grasslands. We averaged the yearly values for each covariate over the 

223 entire period and used them as a unique layer. Finally, we matched the covariates’ data to the 

224 presence-only data by averaging values within the 100 x 100 km grid cells and to the presence-

225 absence data by averaging values within blobs. 

226

227 One of the features of the Bayesian ISDM is the computational cost and, thus, the near-

228 impossibility to do classical variable selection. To circumvent this problem, we pre-assess the 
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229 potential importance of each environmental predictor for each species using tree-based machine 

230 learning analyses (boosted trees, random forests) with the raw presence/absence for both periods 

231 combined as a response and all the environmental predictors. Finally, we performed Pearson 

232 correlations (r) among the top-selected variables and kept four covariates (aiming at maximum 

233 collinearity of r=0.6) for each species (Table 1), also taking into account the species preferences 

234 based on the available literature: Herpailurus yagouaroundi (Caso et al., 2015; de Oliveira, 

235 1998a), Leopardus pardalis (de Oliveira et al., 2010; Murray & Gardner, 1997), Leopardus 

236 wiedii (de Oliveira, 1998b), Nasua nasua (Gompper & Decker, 1998), Cerdocyon thous 

237 (Machado & Hingst-Zaher, 2009; Tchaicka et al., 2007), Chrysocyon brachyurus (Dietz, 1985; 

238 Queirolo et al., 2011), Eira barbara (Presley, 2000), and Pteronura brasiliensis (Noonan et al., 

239 2017). 

240

241 2.2 Model

242 A full description of the model is available in Appendix B. Here is a short summary: We used an 

243 ISDM that combines three different lines of evidence (presence-only, presence-absence data, and 

244 expert range maps), accounts for sampling effort and spatial autocorrelation, and has a temporal 

245 dimension. Our model (Figure 2) assumes that the true (unobserved) species distribution, i.e., the 

246 latent state, is an inhomogeneous Poisson point process conditional on the selected 

247 environmental covariates for each species, the distance to the expert range map, spatial splines, 

248 and time. This true distribution is then sampled through two different observation processes, 

249 generating the presence-only and presence-absence data we see (Figure 2). 

250
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251

252 Figure 2. Simplified schematic of the integrated species distribution model (ISDM) used in our study. 

253 The latent state is the true (unobserved) distribution of individuals of the species. It can be modelled by a 

254 Poisson point process conditional on environmental covariates, the distance to the expert range map, time, and 

255 spatial splines (to account for missing environmental covariates and spatial autocorrelation). This true 

256 distribution is then sampled through two different observation processes, generating the presence-only and 

257 presence-absence data we observe (shown as blue dots and red and black polygons). The joint likelihood of 

258 these observed data, given the unobserved true state and uninformative priors, is then used in MCMC to 

259 calculate posterior distributions of the true state.

260

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4916634

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



261 We used a similar model to Grattarola et al., (2023). Here, we introduce two novelties: (i) 

262 the distance to the edge of the expert map of the species is a covariate in the model, and (ii) we 

263 calibrate the estimated number of records per area by the overall sampling effort (measured by 

264 the ratio of the number of records between time1 and time2 for all carnivores’ data in GBIF). 

265

266 Model evaluation. We performed posterior predictive checks to evaluate the model’s fit (Conn 

267 et al., 2018) and plotted expected and observed data to compare them visually. For the PA data, 

268 we used AUC (Pearce & Ferrier, 2000) and Tjur’s R2 discrimination coefficient (Tjur, 2009). 

269 These values were calculated as part of each model run. For the PO data, we did residual 

270 diagnostics using the ‘DHARMa’ package (Hartig, 2022). 

271

272 2.3 Hotspots of occupancy change 

273 Quantification. The area A of the geographic range of a species for each time period (Atime2, 

274 Atime1) was calculated as follows: We first integrated the point pattern intensity over each grid 

275 cell to get the expected probability of occurrence in each cell. We then summed these 

276 probabilities across all grid cells in the study area. The change of the area of occupancy over 

277 time (the number of 100 × 100 km grid-cells) was calculated as ΔA = Atime2 - Atime1. We also 

278 calculated the uncertainty of the change (expressed as 95% Bayesian credible intervals) and 

279 plotted it in a bivariate plot against the predicted change. 

280

281 Change in species richness. As each species’ models had a different number of iterations, first, 

282 we took 1000 samples from the posterior of the occurrence probability for each species in each 

283 grid cell and in each time period. Then, we calculated the median probability per species/grid 
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284 cell, summed the individual predictions at time1 and time2 (i.e., as stacked species distribution 

285 models) and finally quantified and mapped the temporal change of species richness between 

286 periods in each grid cell.

287

288 Beta diversity and temporal and spatial dissimilarity. We calculated (i) beta diversity as the 

289 ratio between the total diversity and the average diversity at each grid cell (Anderson et al., 2011; 

290 Whittaker, 1960), i.e., as the degree to which regional diversity exceeds local diversity, and we 

291 measure it multiplicatively, 𝛽𝑡𝑖𝑚𝑒 =  𝛾/𝛼𝑡𝑖𝑚𝑒, (ii) the spatial variation in temporal dissimilarity 

292 for each individual grid cell between the two time periods using Růžička index, and (iii) the 

293 temporal change in spatial dissimilarity as the difference in beta-diversity between par of grid 

294 cells within the same time period, using Růžička index.

295

296 2.4 Reproducible workflow

297 The data were processed in R (R Core Team, 2023). We used the ‘rnaturalearth’ package (South, 

298 2017) to obtain Latin American countries’ spatial polygons. Spatial analyses were done using 

299 ‘sf’ (Pebesma, 2018) and ‘terra’ (Hijmans, 2022). We downloaded the MODIS data using 

300 ‘MODIStsp’ (Busetto & Ranghetti, 2016). The ISDM was run using ‘R2jags’ (Su & Yajima, 

301 2020), and the maps were prepared with ‘tmap’ (Tennekes, 2018). Beta diversity was calculated 

302 using vegdist in ‘vegan’ package (Oksanen et al., 2013). The workflow for each species was split 

303 into five Quarto notebooks, including 1) data generation, 2) covariates’ selection, 3) data 

304 preparation for modelling, 4) model run, and 4) model outputs. All this is accessible in a GitHub 

305 repository at: https://anonymous.4open.science/r/hotspots-neotropical-carnivores-587A. 

306
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307 3 Results 

308 We fitted a separate ISDM for each mammal species and revealed their geographic range 

309 dynamics in the Neotropics over the last two decades (Figure A.1). Good convergence was 

310 reached for all model parameters (Rhat <1.1). Of the eight species, five were well supported 

311 based on model performance. We were not able to assess the distribution range of Leopardus 

312 pardalis, Cerdocyon thous, and Nasua nasua. Thus, we excluded this species from the 

313 occupancy change analyses. Average Tjur's R2 was 0.289, and AUC was 0.708 for the PA data 

314 (Table A.4), and we saw an overall reasonable fit for the PO data (Figure A.2). 

315

316 3.1 Changes in the area of occupancy of species

317 The changes in the area of occupancy varied between species, ranging from -2,000,000 km2 to 

318 146,000 km2. They were predominantly negative (Figure 3), meaning that most species (except 

319 Herpailurus yagouaroundi) decreased their probability of occurrence relative to the initial 

320 period.

321
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322

323 Figure 3. Changes in the area of occupancy of species. The change between the two time periods (2000 to 

324 2013 and 2014 to 2021) is split by the uncertainty of the prediction; darker pink and darker green colours show 

325 highly certain losses and gains, respectively. The distribution of the area of change is shown in the lower left 

326 corner for each species. 

327

328 We found that the jaguarundi (Herpailurus yagouaroundi) has contracted its southern range 

329 limits in Argentina and south Brazil while maintaining its presence in central Brazil and the 

330 north of South America and expanding its range in the northeast of Brazil (between Cerrado and 

331 Caatinga biomes) and the western Amazon (Figure 3). We saw a non-significant increase in the 

332 species range between the two periods, with a median change in the area of occupancy of 
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333 146,000 km2 (14.6 grid-cells of 100x100km; CI = -22.4, 54.2). The margay (Leopardus wiedii) 

334 showed range decreases in south Peru and the Chaco and Pantanal regions (Bolivia, Paraguay, 

335 north of Argentina and south-western Brazil), and range expansions in the Uruguayan savannah 

336 (Uruguay and its borders with Argentina and Brazil), part of Cerrado and Caatinga regions, the 

337 north of the Atlantic Forest (Brazil), and the north of Peru and Ecuador. Between both periods, 

338 the species contracted its range in -756,000 km2 (75.6 grid-cells; CI = -129, -21.1). For the 

339 maned wolf (Chrysocyon brachyurus), we saw large geographic range contractions that 

340 concentrated in the Chaco and Uruguayan savannah regions (Uruguay, north of Argentina, and 

341 south Paraguay) and weak expansions over the south-west Amazon moist forests (north Bolivia 

342 and south-west Brazil). The median change in the area of occupancy was 1,640,000 km2 (164 

343 grid-cells; CI = -200, -129). We found that the tayra (Eira barbara) has contracted on its 

344 southern range limit (central Argentina) and expanded on its northern limit (Mexico). The 

345 median decrease in the area of distribution for the tayra was -548,000 km2 (54.8 grid-cells; CI = -

346 70.7, -39.4). The giant otter (Pteronura brasiliensis) was the species with the largest range loss. 

347 Contractions were widespread along the species distribution (mainly in the Amazon basin), with 

348 few areas of unchanged areas concentrated in Guiana lowland moist forests and range 

349 expansions in the western limits of the species range. The giant otter shrunk its range by a 

350 median of 2,000,000 km2 (200 grid-cells; CI = -283, -106).

351

352 3.2 Change in species richness

353 Species richness at each time period (Figure 4a,b), calculated as the average richness across each 

354 period per grid cell, showed an overall similar pattern to that expected by IUCN range maps 

355 (Figure 4c). Diversity of the five species peaked between -10 and -25 degrees south and -55 and -
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356 35 degrees west and declined towards the west of South America, northeast of Brazil and the 

357 north of Mexico. The temporal change in species richness was unevenly distributed across the 

358 continent (Figure 4c). Losses were accumulated in a region covering Uruguay, the north of 

359 Argentina, Paraguay and south Bolivia, and were mostly driven by the contraction of the ranges 

360 of Chrysocyon brachyurus, Herpailurus yagouaroundi, Eira barbara, and Leopardus wiedii (see 

361 occupancy changes in Figure 3). Gains were less conspicuous and more geographically 

362 dispersed, with notable centres in the Caatinga and the Atlantic Forest regions (northeast and 

363 southwest of Brazil), the tropical Andes (central and north Peru, west Ecuador and Colombia) 

364 and north-west Mexico (Figure 4c). 

365
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366

367 Figure 4. Patterns of species richness (SR) and SR change. Including maned wolf (Chrysocyon 

368 brachyurus), giant otter (Pteronura brasiliensis), jaguarundi (Herpailurus yagouaroundi), tayra (Eira 

369 barbara), and margay (Leopardus wiedii). (A) Species richness in time1 (2000 to 2013), (B) species richness 
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370 in time2 (2014 to 2021), (C) species richness according to the IUCN expert range maps (IUCN, 2023), and (D) 

371 change in species richness between both time periods (pink regions indicate species losses and green regions 

372 indicate species gains). 

373

374 3.3 Beta diversity and spatial and temporal dissimilarity

375 Beta diversity, the ratio between the total diversity and the average diversity at each grid cell, 

376 increased from 𝛽𝑡𝑖𝑚𝑒1=1.911 (±3.321) to 𝛽𝑡𝑖𝑚𝑒2=2.088 (±3.408). We also saw an increase in 

377 temporal change of spatial dissimilarity with distance between periods, with time2 being higher 

378 than time1 (Figure 5a). Temporal dissimilarity of species composition between time1 and time2, 

379 measured by the Růžička index, concentrated around locations with a high concentration of 

380 range boundaries (Figure 5b), particularly in the northwest of Mexico (Figure 5b, A1), northeast 

381 Brazil (A2), and the northeast of Argentina (A3). The peaks of temporal dissimilarity in Mexico 

382 (A1) and Brazil (A2) are also areas of change in species composition. In contrast, the peak in the 

383 north of Argentina overlapped the hotspot of species richness loss (Figure 4c). A closer look at 

384 the first case (A1) reveals a gain of Eira barbara and a loss of Herpailurus yagouaroundi, while 

385 the second case (A2) is explained by the gain of Herpailurus yagouaroundi and the loss of Eira 

386 barbara. 

387
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388

389 Figure 5. Change in temporal dissimilarity and spatial dissimilarity of five carnivore species. Measured 

390 with Růžička index, between 2000-2013 and 2014-2021. (A) Temporal change of spatial dissimilarity, i.e., 

391 between each time period at the same grid cell. Dissimilarity is higher in time2 and increases with distance for 

392 both periods; time1 is shown in red, and time2 in blue. Lines connecting the median values are also shown. (B) 

393 Spatial variation in temporal dissimilarity, i.e., between pairs of grid cells within the same time period. High 

394 dissimilarity between time1 and time2 is represented in light pink and low in dark purple. A1, A2 and A3 

395 highlight areas of interest due to high dissimilarity and richness (within or on the boundaries of accumulated 

396 species ranges). 

397

398

399 4 Discussion 

400 There is a high demand for empirical assessments of how nature has been changing in response 

401 to anthropogenic pressures. Yet even the most high-profile reports (IPBES, 2019) rely either on 

402 indirect evidence (e.g. habitats degrade and thus biodiversity must decline), on projection 

403 scenarios (e.g. this is how climate changes and biodiversity will follow), or on reports from small 

404 (local) spatial grains (Blowes et al., 2019). In contrast to these, our study provides the first direct 
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405 continent-wide, multi-species and continuous map of hotspots of temporal change in the 

406 Neotropics over the last two decades. By focusing on the five carnivores’ entire distribution, we 

407 identified variations in species’ occupancy areas, species richness, and species composition. 

408 Most species, one of them listed as endangered and two near threatened (Table 1), underwent 

409 range contractions in the last twenty years, their diversity decreased over time, and species 

410 composition underwent spatial differentiation (sensu Blowes et al., 2022, i.e., dissimilarity 

411 among assemblages increased). The type of changes and directions differed among regions and 

412 countries, and we suggest that this variation can be linked to the ongoing land use changes in the 

413 Neotropical region (Jaureguiberry et al., 2022). Global targets, such as the Kunming-Montreal 

414 Global Biodiversity Framework, demand up-to-date biodiversity knowledge to be used for urgent 

415 conservation action. Our study provides evidence that shows where and how prominent the 

416 declines are in different parts of the continent. Thus, our analysis can contribute to National 

417 Biodiversity Assessments and help prioritise areas for immediate conservation action that can be 

418 tailored to each species.

419

420 We found the most important changes in three specific areas: west of Mexico (Sierra 

421 Madre Occidental and Pacific Lowlands) and northeast of Brazil (Caatinga), with high temporal 

422 dissimilarity, and the north of Argentina (Pampa and Chaco), with high dissimilarity and also 

423 species loss. The Sierra Madre Occidental tropical dry forest is part of the Mexican transition 

424 zone (Morrone, 2017), where the Neotropical and the Nearctic regions overlap. This area has not 

425 been the most affected by land use change (González-Abraham et al., 2015), however, drier 

426 ecosystems have been disregarded in terms of conservation policies in comparison to tropical 

427 evergreen forests in the country (Mendoza-Ponce et al., 2019). This lack of conservation policies 
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428 could explain the pattern we observe. The Caatinga is the largest tropical dry forest in South 

429 America. Although the vegetation in this region is adapted to extreme temperature conditions, it 

430 is expected to be highly affected by climate change (Moura, do Nascimento, et al., 2023; Silva et 

431 al., 2019). The Caatinga and the Chaco/Pampa regions are not among the biodiversity hotspots of 

432 the Neotropics (Myers et al., 2000); they represent areas of medium species richness values. 

433 Importantly, these lowland regions have experienced severe land use changes over the last three 

434 decades. The Chaco has lost 14.5% of its natural vegetation (1,440,000 km2) compared to 1985, 

435 with the greatest loss located in Paraguay (Proyecto Mapbiomas Chaco, 2023), while the Pampa 

436 has lost 11.8% (700,000 km2), mainly of native grasslands (Proyecto MapBiomas Pampa 

437 Trinacional, 2023; Baeza et al. 2023). The conspicuous species loss in these areas could be a 

438 consequence of such profound land use changes. 

439

440 We found diverse types of change in each individual species. The Herpailurus 

441 yagouaroundi was the only species that did not experience net declines in its area of occupancy. 

442 The disparity between our new findings and previous results, suggesting a slight increase 

443 (Grattarola et al., 2023), can be attributed to the incorporation of the species expert range map in 

444 our current model. Including this expert-derived information may constrain the predictions, 

445 leading to a more accurate representation of the species' actual occupancy dynamics. The 

446 increase in the area of occupancy of H. yagouaroundi towards the Caatinga region on the border 

447 with the Cerrado can be explained by the strong wet/dry climate there, which the jaguarundi 

448 prefers (Espinosa et al., 2018). This pattern aligns with (Moura, Oliveira, et al., 2023), who 

449 projected an increase in habitat suitability for the species by 2060 there. However, we saw a 

450 sharp contraction in the southern limit of its distribution range. Thus, the recent first recordings 
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451 of the species in Uruguay (Grattarola et al., 2016) could either be an erratic detection of the 

452 species or a lack of past sampling effort in the area, but not the expansion of the species. 

453

454 In the same area (Uruguayan savannah), we observed an opposite trend for the Leopardus 

455 wiedii, whose occupancy increased over time. Categorised as Near Threatened, L. wiedii is 

456 highly dependent on trees, and the few forested areas of these grasslands in the region may be 

457 key for the species’ conservation planning (Espinosa et al., 2018). The main reductions in the 

458 area of occupancy for L. wiedii were in the west part of the Chaco and the Cerrado, areas 

459 characterised by being like savannahs too (i.e., grasslands with a few trees). A key protagonist of 

460 the Cerrado is Chrysocyon brachyurus, the largest South American canid. C. brachyurus is a 

461 near-threatened species which showed stable occupancy in this area, yet large declines towards 

462 the south of its range, a continuation of a process that had already been documented prior to the 

463 year 2000 (Queirolo et al., 2011). C. brachyurus, however, has expanded its north-western 

464 distribution into the forests of Amazonia. This could be explained by conversions of broad areas 

465 of the lower Amazon to livestock pastures (Souza et al., 2020), giving the species larger open 

466 areas to occupy. 

467

468 The Eira barbara’s area of occupancy also declined, in particular, around the species’ 

469 southern limit and towards the Caatinga in northeast Brazil, aligning with the projected range 

470 shifts of (Moura, Oliveira, et al., 2023). E. barbara’s area of occupancy in the centre of Mexico 

471 showed an increase, although the species is uncommon there and considered endangered in the 

472 whole country. The recent range expansions documented in south and central Mexico could, 

473 however, support our findings (García et al., 2016; Ruiz-Gutiérrez et al., 2017). Finally, 
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474 Pteronura brasiliensis, one of the most endangered mammals of the Neotropics (Noonan et al., 

475 2017), was the species with the most prominent declines in the area of occupancy, with few areas 

476 of expansion that were located in the upper Amazon. There is evidence that P. brasiliensis may 

477 be recovering in this area, around north Perú and northeastern Ecuadorian Amazon (Groenendijk 

478 et al., 2014), but there are also reports of population declines in western Colombia and south 

479 Perú and within the rest of the entire range (Groenendijk et al., 2022). Critically, most 

480 populations of P. brasiliensis are fragmented and isolated. Despite slowly recovering from 

481 decades of hunting for the pelt trade, deforestation of the Amazon and contamination of water 

482 bodies (e.g., by mining) are, in any case, making the species more vulnerable (Brum et al., 2021).

483

484 The presence-absence data we used are more evenly spread than presence-only data, and both 

485 data types are spatially complementary. Therefore, they jointly present low imbalances in the 

486 geographic space they cover. However, a question may arise whether the estimated occupancy 

487 change is real and not a mere reflection of survey effort. Here are the reasons why the latter is 

488 unlikely: (1) our predicted ranges align with the current expert knowledge (IUCN range) and not 

489 with the perceived imbalance in the raw data, (2) we account for several facets of the effort in the 

490 model, and (3) since the model is Bayesian, an area with insufficient data translates in high 

491 prediction uncertainty, which we then report. 

492 We show that the model of Herpailurus yagouaroundi originally developed by Grattarola 

493 et al., (2023) can incorporate expert range maps and be applied to four other carnivore species; 

494 however, we were not able to fit it for three species, Leopardus pardalis, Cerdocyon thous, and 

495 Nasua nasua, because the model showed poor residual diagnostics fit (Figure A.2). This may be 

496 because they are widespread habitat generalists that do not respond to our broad-scale 
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497 environmental covariates or exhibit a clear spatially structured trend. Still, classical model 

498 performance metrics such as AUC and R² are difficult to interpret in hierarchical models that 

499 incorporate both observation and process sub-models (including ISDMs and occupancy models 

500 as described by MacKenzie et al., 2018). These metrics should not be applied in the same way as 

501 in classical SDMs. The challenge arises because the model estimates the unobserved true 

502 occupancy, which represents the actual occupancy, assuming the model is correct. Consequently, 

503 the only valid dataset for calculating AUC and R² would need to accurately reflect this 

504 unobserved true occupancy, demanding data from sites where every individual is detected and 

505 identified. Such comprehensive data are practically unattainable. Even though the analysis of 

506 trends in the remaining five species may seem limited, it still represents the first example of how 

507 temporal changes of occupancy and diversity can be scaled up to entire ranges and multiple 

508 species with limited and heterogeneous data. This highlights the potential of ISDMs to 

509 understand how biodiversity changes over time.

510  In all, we put a temporal perspective on the continental-wide distributions of carnivore 

511 species in the Neotropics and discussed potential drivers of change. We unveiled the species’ 

512 large-scale range dynamics, a key step to implementing conservation measures at the local scale. 

513 With this temporal multi-species approach, we have paved the way to a dynamic macroecology 

514 which no longer produces static range polygons or maps from species distribution models. 

515 Instead, we envision a scenario where field guides, or information signs in zoological gardens, 

516 come with both contemporary and historical distributions. This is necessary in order to grasp the 

517 full extent of the ongoing global biodiversity change, particularly for the general public.  

518
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542 can be seen in Table A.2. To see the code for all the analyses and the workflow followed for 

543 each species, including data preparation, covariates selection, model run and model outputs, 

544 access our GitHub repository: https://anonymous.4open.science/r/hotspots-neotropical-

545 carnivores-587A.  
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