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Abstract
Aim: Anthropogenic changes such as land use and climate change affect species' geo-
graphic ranges, causing range shifts, contractions, or expansions. However, data on 
range dynamics are insufficient, heterogeneous, and spatially and temporally biased 
in most regions. Integrated species distribution models (IDMs) offer a solution as they 
can complement good quality presence- absence data with opportunistically collected 
presence- only data, simultaneously accounting for heterogeneous sampling effort. 
However, these methods have seen limited use in the estimation of temporal change 
of geographic ranges and are not yet widespread as they have a steep learning curve. 
Here we present a generalisable model and case example.
Location: Neotropics -  Latin America.
Taxon: Herpailurus yagouaroundi.
Methods: Using data on presence- absence and presence- only on the jaguarundi 
(Herpailurus yagouaroundi), we modelled the species distribution at two time periods 
(2000– 2013 and 2014– 2021) using a Bayesian model based on Poisson point process 
in JAGS. Our model integrates the different data types while accounting for varying 
sampling effort and spatial effect. We predicted the species range at the two time 
periods and quantified their changes.
Results: Between the two time periods, the jaguarundi has contracted its southern 
and northern range limits towards the equator but expanded its area of distribution 
over the entire species' range. Also, our results show that modelled geographic range, 
of either time period, is not entirely consistent with the current expert range map 
from IUCN.
Main Conclusions: Our modelling approach provides a working example with the po-
tential to address data gaps and biases in other taxa and regions. Given the increasing 
number of incidental data being generated by community- derived initiatives in Latin 
America, IDMs can become a valuable source for species distribution modelling in the 
region. This is the first application of the IDM approach with temporal dimension and 
over the entire species' geographic range.
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1  |  INTRODUC TION

Mapping the temporal change of species' geographic ranges in 
today's changing world (Cardinale et al., 2012; Urban, 2015) is a 
critical task for biogeography. To describe the dynamics of entire 
geographic ranges of species, we need both data over large and 
often heterogeneous regions, sometimes across entire continents 
or even the world, as well as data collected over a long- time pe-
riod (Yoccoz et al., 2001). Despite increasing access to open data 
(Wüest et al., 2020), they are still sparse and spatially and tempo-
rally biased (Boakes et al., 2010; Maldonado et al., 2015; Meyer 
et al., 2016; Shirey et al., 2021). Moreover, the available data rarely 
come from a single large and standardised sampling effort (Ondei 
et al., 2018), but instead comprise a mix of local surveys that used 
different sampling methods (e.g., camera- traps, eDNA, or acous-
tic data loggers; Deiner et al., 2017; Gibb et al., 2019; Steenweg 
et al., 2017), as well as incidental occurrence records (e.g., derived 
from museum specimen collections and citizen- science records; 
Chandler et al., 2017; Osawa, 2019). To tackle the global challenge 
of stopping the loss of biodiversity (IPBES, 2019) without any fur-
ther delay, we must seek to develop species' distribution models 
with the heterogeneous data that are available today (Heberling 
et al., 2021).

Integrated species distribution models (hereafter IDMs) comprise 
a recently developed family of parametric species distribution 
models that combine ecological information within multiple data 
types that were typically collected by different survey approaches 
(Isaac et al., 2020; Kéry & Royle, 2015; Miller et al., 2019). IDMs 
capitalise on each data type's strengths, i.e., standardised surveys 
can provide information on the local abundance of species but 
often only at a relatively small number of sites, while opportunis-
tic occurrence records can cover larger geographic/environmental 
spaces and can inform on range boundaries. IDMs are usually hier-
archical models that explicitly model the sampling process of each 
dataset to account for limitations, including imperfect detection 
and sampling bias (Fithian et al., 2015; Fletcher & Fortin, 2018; K. 
Pacifici et al., 2017), as well as varying effort and area of surveys 
(Keil & Chase, 2019). A characteristic of most IDMs is that they as-
sume a common underlying spatial point process that determines 
the spatial locations of individuals of a species (Dorazio, 2014; 
Fletcher Jr. et al., 2019; Miller et al., 2019). Following this as-
sumption, parameters affecting the intensity (or density) of the 
resulting point pattern (e.g., land cover or climate) are estimated 
using the joint likelihood for all included data types (Fletcher Jr. 
et al., 2019). As the point pattern has no spatial resolution, it can 
be aggregated to spatial units of any size (Baddeley et al., 2015). 
Most applications so far fit IDMs in a Bayesian framework (van de 
Schoot et al., 2021), which also helps propagate the uncertainties 

associated with each data type into the predictions and parameter 
estimates.

Studies have already shown the many advantages of model- 
based data integration. First, the increased sample size from making 
use of diverse data streams tends to increase the precision of param-
eter estimates (Farr et al., 2021; Zipkin et al., 2017) and the accuracy 
of the predictions (Zulian et al., 2021). Second, combining structured 
or semi- structured data with unstructured data helps to factor out 
spatial biases in the latter and consequently helps to make better use 
of data streams coming from opportunistic citizen science events 
(Dorazio, 2014; Zulian et al., 2021). Finally, the greater geographic 
coverage achieved by data integration may lead to a better sampling 
of environmental gradients and hence improve the accuracy and 
precision of the estimated effects of covariates such as land cover 
and climate (Bowler et al., 2019; Chevalier et al., 2021).

Despite the great promise of IDMs, their applications are still 
limited. Studies have used IDMs to address a wide range of data 
integration problems (e.g., Martino et al., 2021; Rose et al., 2020; 
Schank et al., 2017; Zulian et al., 2021), but they have mostly been 
used over local (Farr et al., 2021) or nationwide (Hertzog et al., 2021) 
extents, and at fine grains, but not to model entire geographic ranges 
of species over coarse grains. As an exception, Zulian et al. (2021) 
used data integration to model the full geographic distribution of 
a parrot species endemic to the tropical South American Atlantic 
Forest. Further, with some exceptions (Doser et al., 2022; Hertzog 
et al., 2021; Pagel et al., 2014), IDMs have not been used to model 
temporal change of distributions, although this could be their ob-
vious application, given the scarcity of temporally replicated data. 
Finally, IDMs can appear complex, with a lack of user- friendly tools 
available; thus, their implementation can be challenging, particularly 
for inexperienced users. Hence, the full potential of IDMs has yet 
to be realised and made accessible, and there is a need for models 
that balance pragmatism and realism for combining the data typically 
available for large- scale distribution models.

Here, we introduce an IDM that addresses these shortcomings 
and models the temporal dynamics of entire species' geographic 
ranges by integrating two common data types: presence- only ob-
servations (e.g., as available in GBIF) and presence- absence surveys 
(e.g., from systematic surveys, in our case from camera traps). The 
model also accounts for common data problems such as local and re-
gional variation in sampling effort and unequal area of surveys. The 
model can predict the temporal change of geographic distributions, 
change in range size, and the associated uncertainty at any spatial 
resolution. Lastly, one of our important aims is to lower the learning 
threshold of IDMs for new users.

The American tropics (the Neotropics) have been identified among 
the most important hotspots of biodiversity in the world (Antonelli 
et al., 2018; Morrone, 2017). At the same time, they are one of the 
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areas where biodiversity is declining at higher rates (IPBES, 2019). 
Unfortunately, data challenges are particularly pronounced in this 
region (Meyer et al., 2016); thus, the range dynamics of many spe-
cies that occur there remain unknown. The available data are scat-
tered and heterogeneous, typically coming from countries such as 
Colombia, Brazil, and Mexico and mainly from the birds' group. As a 
test case for our IDM, we chose the jaguarundi (Herpailurus yagoua-
roundi, also known in Spanish as yaguarundí, gato moro, leoncillo, 
león brenero, and onza) (Figure 1), which has a large distribution 
across Latin America, but knowledge of it has been limited by the 
data. Evidence shows that carnivore species such as the jaguarundi, 
have been recently varying their geographic distribution, most 
often noted around range edges (Grattarola et al., 2016; Lombardi 
et al., 2022; Luengos Vidal et al., 2017), and their abundance, over 
their entire distribution range (Caso et al., 2015). However, whether 
these changes are a product of previous lack of monitoring efforts 
in the region or due to the expansion or contraction of this species' 
range over time has not been quantitatively studied. Here, we de-
velop an IDM to fill this knowledge gap. Moreover, we use our study 
design to provide a clear working example with R code, which can 
easily be copied, extended, and applied to model the range dynamics 
of other species.

2  |  MATERIAL S AND METHODS

2.1  |  The data

Occurrence records (i.e., presence- only data; Figure 2) were 
downloaded from GBIF (GBIF.org, 2021), filtering all records from 
Neotropical carnivores with geographic coordinates and with no 
spatial issues. Jaguarundi data were subset by removing records 
with coordinate precision smaller than three decimal places (i.e., 
0.001), and coordinate uncertainty greater than 25,000 me-
ters (to match the resolution of the environmental predictors of 

100 × 100 km). Finally, we eliminated duplicates considering inde-
pendent records as individuals recorded on a different date, lati-
tude, and longitude. Since we aimed to compare the distributional 
change in time, we divided the data into two time periods (time1: 
2000– 2013 and time2: 2014– 2021), which were chosen since most 
of the data were collected from 2000 onwards and, on average 
each period represented 50% of the data (presence- absence and 
presence- only). A more unbalanced data split would likely increase 
the uncertainty of the estimated distribution in the period with 
the lower sample size, which might lead to convergence issues. 
For each time period, we mapped the data to 100 × 100 km reso-
lution grid- cells (Lambert azimuthal equal- area projection; centre 
latitude 0°S and centre longitude 73.125°W) covering the entire 
Neotropical region (i.e., from Mexico to the south of Argentina) 
-  100 km was chosen as a compromise between sufficiently coarse 
for computational efficiency and sufficiently fine to produce use-
ful descriptions of a species' range at a continental scale. In total, 
there were 193 occurrence records for the first time period and 
234 records for the second period. See Figure S1 in Supporting 
Information, a schema of the data processing.

Presence- absence data (Figure 2) were extracted from Nagy- 
Reis et al. (2020), a database of neotropical carnivores records 
derived from different heterogeneous sources (researchers, 
governmental agencies, non- governmental organisations, and 
private consultants) and methods (camera trapping, museum col-
lections, roadkill, line transect, and opportunistic records). This 
database was cleaned by retaining data generated by surveys 
using camera traps (with detection and non- detection values), 
with geographic coordinates, with information about the study 
sampling area, with starting and ending month and year of the 
study, and with reported sampling effort (i.e., the number of ac-
tive camera trap days). These variables were then considered in 
the model; the temporal span was used to split the data, and the 
location, area, and sampling effort were used either as offsets or 
as covariates in the model. For each survey, a buffer polygon was 

F I G U R E  1  Individuals of jaguarundi (Herpailurus yagouaroundi) displaying the main two- coat colour variants. Left observed in Mexico by 
albamaya (CC- BY- NC) and right in Argentina by hhulsberg (CC- BY- NC). Photos from iNatu ralist.org.

http://inaturalist.org
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created using the latitude and longitude of the survey as centroid 
and either the study area or the latitude/longitude precision for 
the studies at the sampling level of “area” as the expected area of 
the polygon (see the metadata in Nagy- Reis et al. 2020 for more 
details on these definitions). Individual polygons were then over-
lapped and combined into ‘blobs’ for each time period. Finally, 
absences were generated in those blobs where the jaguarundi 
was not recorded. For more details, see the chart of the data- 
processing workflow in Figure S1. We used data from 8346 sur-
veys for our study period: 4303 for the first period and 4043 for 
the second. The jaguarundi was recorded in 614 of the surveys 

(356 times in the first period and 258 in the second). Overlapping 
surveys for each period were then combined in blobs (488 for the 
first period and 480 for the second), and for each one, we calcu-
lated the total surface area, the time span of the records, and the 
effort in camera trap days.

2.1.1  |  Thinning variables

These variables were used to explain the observation process 
of the presence- only records. The real- world occurrences of 

F I G U R E  2  Distribution of the jaguarundi data for the two time periods: from 2000 to 2013 (time1) and from 2014 to 2021 (time2). The 
top row shows occurrence records from GBIF.org (2021), and the bottom, camera- trap surveys from Nagy- Reis et al. (2020) with presences 
in colour and absences in dark grey (i.e., blobs in which some carnivore species were reported, but not the jaguarundi). Blobs were buffered 
by 20 km to improve visibility. The geographic range distribution of the jaguarundi, according to IUCN, is shown in shaded grey for all maps 
(IUCN, 2022). Projection WGS 84.
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the jaguarundi can be thought of as a point pattern (Baddeley 
et al., 2015), which is then sampled such that only some points 
are observed (thinned) and end up in GBIF, and ultimately in 
the presence- only dataset. To adjust the presence- only data for 
sampling effort (i.e., thinning) in each 100 × 100 km grid cell, we 
used data on accessibility from urban areas based on travel time 
(Weiss et al., 2020). Based on many past studies (e.g., Geldmann 
et al., 2016), we expected that highly accessible grid cells would 
have more point records than inaccessible grid cells. In addition, 
for each grid cell, we also included the country of origin to ac-
count for differences among countries in data- sharing capacities 
and citizen- science levels of engagement.

2.1.2  |  Environmental covariates

The jaguarundi has been reported to occur mainly in lowland areas 
(up to 3200 m) (Caso et al., 2015) and in a variety of habitats, from 
dense tropical rainforest to open grassland, although in open areas 
it prefers patches of thick cover (Macdonald & Loveridge, 2010). 
To model its distribution, we chose a set of environmental co-
variates and assessed their relative importance for the species. 
For each grid cells in the 100 x100 km grid, and for each blob, we 
extracted the 19 bioclimatic variables and elevation (SRTM) from 
WorldClim V2.1 (Fick & Hijmans, 2017), land cover at 500 m/yearly 
resolution (MCD12Q1) (Friedl & Sulla- Menashe, 2019), net pri-
mary production (NPP) 500 m/yearly resolution (M*D17A3HGF) 
(Running & Zhao, 2019), percentage of tree cover and percent-
age of non- tree vegetation 250 m/yearly resolution (MOD44B) 
(DiMiceli et al., 2015), from NASA MODIS Terra. The time span of 
the MODIS- derived data was from 2000 to 2020. We averaged the 
yearly values for each covariate over the entire period and used 
them as a unique layer.

2.1.3  |  Covariate extraction to grids and blobs

Continuous covariate data were matched to the presence- only data 
by averaging values within the 100 × 100 km grid cells and to the 
presence- absence data by averaging values within blobs. For the 
land cover (categorical covariate), we assigned the mode value (i.e. 
the most common value) for each grid cell and blob. We used the 
‘rnaturalearth’ package (South, 2017) to obtain Latin American coun-
tries' spatial polygons at a large scale. Spatial data analyses were 
done using ‘sf’ (Pebesma et al., 2018) and ‘terra’ packages (Hijmans 
et al., 2022). MODIS data were downloaded using ‘MODIStsp’ 
(Busetto & Ranghetti, 2016).

2.1.4  |  Covariate selection

Using all these covariates would lead to convergence problems due 
to collinearities, so we narrowed down the scope of the covariates 

for the final integrated model. Yet, doing a formal stepwise variable 
selection in the IDM setting is challenging because of computation-
ally intensive MCMC sampling; similarly, Bayesian variable selec-
tion (O'Hara & Sillanpää, 2009) led to convergence problems. We 
thus manually selected a subset of covariates using (i) published 
descriptions of jaguarundi's habitat requirements (Caso et al., 2015; 
Espinosa et al., 2018; Macdonald & Loveridge, 2010), (ii) Pearson 
correlations among covariates (we aimed at minimising them; 
r < 0.6), (iii) findings (the top selected variables) from simple tree- 
based machine learning analyses (boosted trees, random forests) 
with the raw presence/absence as a response, and all the covari-
ates as predictors. We ended up selecting bio7 (temperature annual 
range: maximum temperature of the warmest month -  minimum 
temperature of the coldest month), bio15 (precipitation seasonal-
ity), elevation, and NPP (Net Primary Production) (see Figure S2 in 
Supporting Information).

2.2  |  The model

We illustrate our model as a Directed Acyclic Graph (DAG) in 
Figure 3. Notation of the data matrices, parameters, and indices is 
in Table S9.

2.2.1  |  Approach to integration

The model assumes that jaguarundi's distribution can be described by 
a continuous point pattern intensity (Equations 1 and 2 below) across 
Latin America. This intensity is then integrated across blobs to cal-
culate the likelihood of the presence- absence (PA) data (Equation 4) 
or across 100 × 100 km grid cells to calculate the likelihood of the 
counts of presence- only (PO) records within the cells (Equation 8). 
Both likelihoods are then used jointly (Miller et al., 2019) to estimate 
parameter values.

2.2.2  |  Modelling of time

A key feature of our model is that it allows for different probability 
of occurrence at each location between the first (time1) and second 
(time2) periods. To understand this, let us point out the parts of the 
model that are constant in time, and parts that change. We defined 
the following model components to be constant in time (identical in 
time1 and time2): (i) the relationship between point process intensity 
and environmental covariates, (ii) the relationship between accessi-
bility and point process thinning, (iii) the random effects of countries 
on point process thinning, and (iv) the relationship between sam-
pling effort and presences/absence data. The only components that 
change in time are the autocorrelated spline surfaces, one for time1, 
and the other for time2. These capture any time- dependent spatial 
structure in the jaguarundi's occurrence that is not captured by (tem-
porally constant) environmental covariates.
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2.2.3  |  Point pattern intensity

To create the point pattern intensity of jaguarundi occurrences, we 
used design matrices (XPA and XPO) that contained as many columns 
as the fitted model has parameters; in our case, 21: an intercept, 
environmental covariates (elevation, NPP, bio7, bio15) and the spline 
bases, and as many rows as blobs or grid- cells respectively. When 
the design matrices are multiplied by the vector of parametric ef-
fects (b), they yield the linear predictors (�PA and �PO), i.e., the ex-
pected point pattern intensity, given the values of all explanatory 
variables in the model:

Note here that b is the same in both Equations 1 and 2 (see also 
Figure 3); this is the central part of the model which connects the PO 
and PA data and allows the calculation of the joint likelihood. For the 
b parameters, we used Gaussian priors with 0 mean and SD of 10, 
i.e., br ∼ Normal(0, 10), where r ∈ 1: npar (total number of parameters 
in b). This prior distribution is sufficiently flat (‘uninformative’) given 
the scale of the predictors (scaled to 0 mean and SD = 1), while also 
not too wide to hinder MCMC convergence (Kéry & Royle, 2015).

2.2.4  |  Smoothing splines

We used thin plate regression splines (Wood, 2003) to model the 
spatial structure in the distribution that was not accounted for 

by the environmental covariates. These spatial splines give our 
model the flexibility to predict absences in otherwise suitable en-
vironments, which can happen due to dispersal limits, demographic 
stochasticity, or biotic interactions. In other words, the splines en-
able us to model the realised distribution in each time period, i.e., 
the actual distribution affected by its ecological preferences and 
factors such as dispersal limitation, and not just the fundamental 
distribution given solely by the environmental conditions (Rushing 
et al. 2019). Since we fit a different spatial spline for each time pe-
riod, we used the splines as a flexible way to model change without 
making any assumptions about the drivers of change. We first gen-
erated k = 9 spline basis variables prior to the model fitting, using the 
jagam function from the ‘mgcv’ package (Wood, 2017). These vari-
ables are then part of the XPA and XPO matrices, and they have their 
own corresponding coefficients in the b vector. These coefficients 
have their own multivariate normal prior, specified using smoothing 
penalty matrices and smoothing parameters; for the sake of simplic-
ity we do not present the complex mathematical definition here; we 
refer readers to the help of the jagam R function. We selected k = 9 
as it was the highest value that still gave good convergence of the 
MCMC, and also provided sufficiently flexible surfaces to model 
large- scale geographic range.

2.2.5  |  Modelling presence- absence data

Letting yPAi
 refer to the observed presence (1) or absence (0) value in 

each i- th blob for the first or second period, we modelled the blob- 
specific probability of presence (� i) as a function of the fixed effects 
of the presence- absence linear predictor (�PAi

) and sampling effort 

(1)�PA = XPA × b

(2)�PO = XPO × b

F I G U R E  3  Graphical illustration of our IDM. In this Directed Acyclic Graph (DAG), the yellow boxes refer to the responses, the green 
boxes to data, the pink circles to parameters to be estimated, the blue circles to linear predictors, and the arrows to causal relationships. 
Note that the ‘b’ parameter links both models. In the bottom part, we illustrate how we predicted the probability of occurrence and 
calculated the species' range area at each period.
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(efforti, i.e., number of camera trap days), and the logarithm of the 
area of each blob in m2 (areaPAi

) as an offset term,

where the index i  identifies blobs. Prior distribution of � was 
� ∼ Normal(0, 10), i.e., Gaussian prior with mean zero and standard de-
viation of 10. This prior distribution is sufficiently uninformative given 
the scale of the predictors (scaled to 0 mean and SD = 1), while also not 
too wide to hinder MCMC convergence.

The state of this variable follows a Bernoulli distribution with 
mean � i where yPAi

 is the observed data,

2.2.6  |  Modelling presence- only data

We assume that the spatial distribution of individuals may be mod-
elled using a Poisson point process. In our model, the true intensity 
(i.e., mean number of presence points per grid- cell) for the species in 
each grid- cell j is denoted as �j. We modelled it as a function of the 
exponential of the presence- only linear predictor (�POj

) by the area of 
each grid- cell in m2 (areaPOj

).

where j denotes a grid- cell.
To model the thinning of the true intensity, we calculated the 

cell- specific probability of retaining/observing a point (Pretj) as a de-
caying exponential function with a random intercept �0c for each c- th 
country and a fixed slope �1 for grid- cell accessibility (accej),

The prior distribution for �0c was Beta distribution with shape 
parameters equal to one, i.e., �0c ∼ Beta(1, 1) where c ∈ 1: ncntr, (total 
number of countries). This is a flat prior that gives equal probability 
density to every value between 0 and 1. The prior for the slope of 
the distance decay �1 was a Gamma distribution with shape 0.5 and 
scale 0.05, i.e., �1 ∼ Gamma(0.5, 0.05). This is a weakly informative 
prior that is skewed to take small values; it is wide enough to be 
effectively non- informative given the meaningful parameter values, 
but not too wide to hinder MCMC convergence.

Finally, we calculated the thinned intensity per grid- cell (�j) as the 
product of the true intensity (�j) times the probability of retaining a 
point per grid- cell (Pretj):

The state of this variable follows a Poisson distribution with 
mean �j where yPOj

 is the observed data,

2.2.7  |  Predictions

To predict the probability of occurrence of the species in the two 
time periods, we used the linear predictor �pred, as

The detection probability (Ppredj) was modelled for each grid- cell j 
with area (areaPOj

) as an offset term.

2.2.8  |  Derived Quantities

Finally, as derived outputs of the model, we calculated the area of 
the species range for the first period (Apre) and the second period 
(Apost) with nPO as the total number of grid cells for both periods 
together,

and the difference in the area (in number of 100 × 100 km grid- cells) for 
both time periods (ΔA):

The model was run in JAGS (Plummer, 2003) with the package 
‘R2jags’ (Su & Yajima, 2020) and using 3 chains, 100,000 iterations 
per chain, 10,000 burning length and 10 as thinning rate. To check 
for convergence, we controlled “Rhat” statistics and traceplots (see 
more on model diagnostics in the GitHub repository) using the ‘gg-
mcmc’ package (Fernández- i- Marín, 2016). All analyses were per-
formed in R 4.0.5 (R Core Team, 2021). The model and the model 
definitions can be accessed at: https://github.com/bienf loren cia/
yagua rundi_IDM.

2.2.9  |  Assessing Model Performance

We performed posterior predictive checks to evaluate the fit of the 
model (Conn et al. 2018) and plotted expected and observed data to 
visually compare them. Also, for the PA data, we used Tjur's R2, a co-
efficient of discrimination for logistic regression models (Tjur 2009), 
and for the PO data, we did residual diagnostics using the ‘DHARMa’ 
package (Hartig, 2022).

3  |  RESULTS AND DISCUSSION

We successfully fitted an IDM to study the dynamics of the geo-
graphic range of the jaguarundi in Latin America over the last two 

(3)cloglog
(

� i

)

=�PAi
+ log

(

areaPAi

)

+�× log
(

efforti
)

(4)yPAi
∼ Bernoulli

(

� i

)

(5)�j = areaPOj
× exp

�POj

(6)Pretj = �0c × exp−�1×accej

(7)�j = �j × Pretj

(8)yPOj
∼ Poisson

(

�j
)

(9)�pred = XPO × b

(10)cloglog
(

Ppredj

)

= �predj + log
(

areaPOj

)

(11)Atime1 =
∑

�predj where j ∈ 1: �PO ∕2

(12)Atime2 =
∑

�predj where j ∈ �PO ∕2: �PO

(13)ΔA = Atime2 − Atime1

https://github.com/bienflorencia/yaguarundi_IDM
https://github.com/bienflorencia/yaguarundi_IDM
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decades. Good convergence values (Rhat <1.1) were reached for all 
model parameters. Data integration enabled us to increase the sam-
ple size, geographic extent, and environmental scope for each time 
period, taking advantage of the complementary information and 
sampling locations in different data streams (see Table S10). As the 
open data revolution continues and citizen science contributes ever- 
increasing amounts of data, we expect IDMs will become a standard 
tool for ecologists, provided that the tools become available. To our 
knowledge, we present the first application of the IDM approach 
with a temporal dimension and over the entire geographic range of 
a species.

3.1  |  Most up- to- date knowledge of the 
species range

Expert range maps have played important roles in both research and 
policy by providing information on species distributions where there 
are data gaps. However, expert range maps are unsurprisingly coarse 
and infrequently updated, which means that they rapidly become out- 
of- date and have been less useful for studying range change. Using all 
the data available (open- access) for the species from 2000 to 2021, 
our modelled geographic range (time1 and time2) is not entirely con-
sistent with the current expert range map from IUCN (Figure 4c). 

F I G U R E  4  Predicted occupancy probability of the jaguarundi during the two time periods (a) from 2000 to 2013 and (b) from 2014 to 
2021 (darker colours reflect high probabilities of species occurrence), (c) species' IUCN range map (IUCN, 2022), (d) difference in occupancy 
probability between the two time periods (pink regions indicate range loss and green regions indicate regions of predicted range gain), (e) 
uncertainty (SD) of the range change (darker grey indicates regions with more uncertainty), and (f) range difference split by the uncertainty 
of the prediction (darker pink and green colours show highly certain range losses and gains, respectively) –  this shows that the jaguarundi 
has contracted its southern and northern range limits but expanded its area of distribution over lower latitudes. Projection WGS 84.
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Specifically, in the southern range limit in Argentina and Uruguay and 
in the Caatinga region of north- eastern Brazil, where our model pre-
dicted a low probability of occurrence, or in the border of Mexico with 
Guatemala and the northern Andes, where it predicted a high prob-
ability. Thus, we have updated the knowledge presented by the IUCN 
expert's range map.

3.1.1  |  Temporal change

The main innovation of our IDM is the estimation of temporal change 
in species' geographic range, which was possible even over a rela-
tively short time span. We found that between the first and second 
periods, the jaguarundi has contracted its southern and northern 
range limits towards the equator but expanded its area of distribu-
tion over the entire species' range (Figure 4d,f). In particular, the spe-
cies has retracted from the central area of Argentina, Uruguay and 
Paraguay (Figure 4f, purple colour), while maintaining its presence 
in central Brazil (grey colour) and expanding towards the Brazilian 
and Colombian Amazon region (green colour). We also saw an in-
crease in the species range between the two periods, from a me-
dian of 1190 grid cells (100 x 100 km) in the first period to 1279 grid 
cells in the second period (Figure 5a), with a median range change (Δ
Area = Atime2 − Atime1) of 88.5 grid- cells (Figure 5b).

We attribute the southern and northern range contractions to 
the species being rarer close to its environmental niche limits. Yet, 
at least in the southern limit, major land conversions have taken 
place in recent decades as a result of agriculture expansion (mainly 
soybean Baldi & Paruelo, 2008; Song et al., 2021), where the spe-
cies also occurs at relatively low densities (Giordano, 2016; Luengos 
Vidal et al., 2017). The jaguarundi can also be shifting its distribution 
as a response to changes in environmental variables such as increas-
ing temperatures and precipitation anomalies (Magrin et al., 2014) or 
due to the influence of the distribution of other species, e.g., com-
petitive exclusion with Leopardus pardalis due to what is known as 
“the ocelot effect” (de Oliveira et al., 2010).

However, we note that even though our model can model tem-
poral change of species ranges, it does not directly test causal hy-
potheses about drivers of the change. This is because we modelled 
temporal change solely using the different spline surfaces in first 
and second periods, while the environmental covariates in the model 
were long- term averages. In a way, our model thus predicts range 
kinetics (i.e. temporal change) rather than dynamics (i.e. temporal 
change and its causes). Here we see a clear opportunity for exten-
sions of our IDM to directly assess causal drivers of the change. A 
simple approach can be to relate the predicted change of Ppred to an 
observed change of environment directly within the model (specif-
ically, in the “predicted quantities” part). Environmental covariates 
could be decomposed into both the spatial long- term means as well 
as the temporal anomalies (Oedekoven et al., 2017). A more sophis-
ticated approach could involve velocity (i.e., magnitude and spatial 
direction) of both the range and environment (Loarie et al., 2009) or 

modelling co- occurrence effects (Ovaskainen et al., 2017). A chal-
lenge when testing species interactions will be the dependency of 
these on the scale of analysis. At smaller spatial scales, species' re-
actions to environmental factors may reflect their preferences for 
particular habitats or how they use space, while at larger scales, their 
responses may indicate broader ecological patterns such as meta-
community dynamics, biogeographical limitations, and energy con-
straints (Connor et al., 2019; Riva et al., 2023).

F I G U R E  5  (a) Boxplot of posterior densities of the predicted 
area for the jaguarundi in both periods: Atime1 from 2000 to 2013 
and Atime2 from 2014 to 2021. (b) Posterior distribution of range 
change (ΔArea), dashed line = no range change, and red lines are the 
mean and 95% CI.
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3.2  |  Model performance and prediction 
uncertainty

Posterior predictive checks showed that the model performs well 
for the PA data (Tjur's R2 = 0.368, Figure S3). The PO model was 
checked by simulating new data from the fitted model, followed by 
residual analysis, and overall showed a reasonable fit (Figures S4 
and S5). To highlight where there was most uncertainty in the model 
predictions, we calculated the predicted change in occupancy at the 
grid cell level and plotted the uncertainty of grid- level change (i.e., 
the standard deviation of the posterior distribution of occupancy 
change) (Figure 4f). By incorporating uncertainty in our predictions, 
we ensure that all predictions are robust to the data.

3.2.1  |  Ecological inference

An advantage of our parametric IDM (over, e.g., a machine learn-
ing such as random forest) is that it can also be used for ecologi-
cal inference. According to the coefficients for the environmental 
covariates (Figure 6), the jaguarundi avoids deserts and semi- arid 
areas such as the Atacama or the Brazilian Northeast (negative ef-
fect of annual temperature range, or “bio7”, in Figure 6); it prefers 
areas with seasonal precipitation, which is most of Latin America 
except for the deserts, high Andes, and extremely humid Colombian 
forests (positive effect of precipitation seasonality, or “bio15”). This 
aligns with findings from Espinosa et al. (2018), who show that habi-
tat suitability for the species is negatively affected by extreme tem-
peratures and low annual precipitation. The jaguarundi also prefers 
productive green areas with good vegetation cover, likely where it 
can hide (positive effect of NPP). Finally, we found a positive effect 

of elevation (but it was also weak, relatively to the effect of other 
covariates, Figure 6). This indicates that the jaguarundi may not be 
restricted to lowlands, as described by Caso et al., (2015). This is 
in line with several observations from higher elevations in our data 
(presence- only records in Figure 2). Hence our model suggests that 
if an area offers enough vegetation cover and suitable climatic con-
ditions, jaguarundi will likely be present, irrespectively of altitude. 
This insight would be impossible if a presence- absence approach to 
species distribution modelling were used, as these data miss the oc-
currence of jaguarundi in the northern Andes (Figure 2), unlike the 
presence- only data.

3.2.2  |  Inference about sampling effort -  the 
thinning function

A notable feature of our model is how we considered the probability 
of an observation being made if the species was present (i.e., the 
thinning process; Equation 6). We made it dependent on the grid- 
cell accessibility since this is a known variable associated with the 
density of presence- only records and reflects the effect of the 
number of possible observers and their tendency to observe spe-
cies near where they live. Moreover, we allowed its effect to vary 
among countries, allowing for differences in capacities to observe 
and report observations. Our results revealed that, for the predicted 
species range distribution (Figure 4), countries such as Argentina, 
French Guiana, and Suriname have reasonable levels of records for 
the species in accessible areas (see Figure S6). However, most coun-
tries show low observation- retention probability (Pret <0.25 when 
accessibility is maximum; see Figure S6), which means that even 
areas that are easy to reach only get less than 25% of observations. 
We expected that countries such as Colombia had better levels of 
sampling effort for the species, as this is one of the countries in 
Latin America with the highest numbers of records in GBIF (GBIF 
Secretariat, 2022). However, the low levels of sampling found there 
can be related to the high abundance (point intensity) of the species 
in the area. Regardless, some particular regions of the species distri-
bution range, as seen by the uncertainty of the estimates, need more 
sampling effort (see Figure S7), i.e., central Mexico, northeast Brazil, 
Peruvian Amazon, eastern Bolivia, and Uruguay.

3.2.3  |  Limitations and potential extensions

Like with any other model, our IDM has clear limitations and scope 
for improvements. First, if larger datasets on species occurrences 
are available, the number of predictors can be increased, and the 
best covariates selected during model- fitting, e.g., with variable 
indicator selection (O'Hara & Sillanpää, 2009, Rushing et al. 2019). 
However, in data- poorer contexts such as ours, this can lead to con-
vergence issues. Second, since it is implemented in JAGS, the model 
can be extended in various ways. Accounting for imperfect detection 
(Dorazio, 2014; Koshkina et al., 2017), modelling multiple species in 

F I G U R E  6  Effect of the environmental covariates on the 
intensity of the point process for the jaguarundi. Thick lines 
represent 90% of the highest posterior densities of the parameters 
and thin lines represent 95%.
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joint species distribution models (Doser et al., 2022; Ovaskainen 
& Abrego, 2020), e.g., to share information on the thinning pro-
cess (Fithian et al., 2015), or accounting for false positives (Kéry & 
Royle, 2015) are some of the potential extensions that have recently 
been tested in the IDM framework (Doser et al., 2022), although not 
over large geographic extents. Also, for the sake of simplicity, we 
established two discrete temporal periods that enabled us to have 
balanced presence- only and presence- absence data and to produce 
an up- to- date map of the species' current distribution. However, 
time can also be included as a continuous predictor in our model 
(e.g., by allowing the spatial splines to interact with the year) to allow 
predictions of annual change in distributions. Third, the simple linear 
responses are enough to demonstrate the general idea of the model, 
i.e., the model converges without more complex response curves. 
However, the presented model can be expanded to fit, for instance, 
unimodal responses, if more realistic (Rushing et al. 2019).

3.2.4  |  Data imbalance

The PA and PO data show different spatial patterns; specifically, 
there are more PO points towards Central America, but slightly 
more PA data towards south- east South America. However, our 
modelled predictions should be robust to this data imbalance be-
cause: (i) each data type has a similar spatial pattern across time 
periods, and their joint spatial pattern covers the whole range of 
the species expected from the IUCN. Therefore, they jointly pre-
sent low imbalances in the geographic space they cover; (ii) both of 
our predicted ranges align with the current expert knowledge (IUCN 
range) and not with the perceived imbalance in the raw data (com-
pare Figure 2 with Figure 4a,b and Figure 4c); (iii) as our analysis is 
Bayesian, we were able to incorporate the uncertainty around the 
estimated temporal change, measured by the standard deviation of 
the predicted range change (Figure 4e). This uncertainty in a given 
location should increase when there is a lack of data in the location 
(Figure S7). By incorporating uncertainty in our predictions, we en-
sure that all predictions are robust to the data imbalance.

The model tends to underpredict species presence, as the probabil-
ity of occurrence was not always high in areas with high species counts/
presences. Our model was, therefore, better at predicting absences 
than presences. Range expansions are reflected in larger PO counts in 
the second period (Figure S8). However, range contractions are most 
likely driven by the PA data (Figure 2 vs. pink areas in Figure 4d).

3.2.5  |  Practical applications and challenges

Jumping from classic statistics to full Bayesian statistical infer-
ence comes with some hurdles. There are conceptual barriers/
obstacles, new terms/definitions and much “statistical rethinking” 
(McElreath 2020). There are also no pre- made R functions to choose 
from, and users must design and code on their own. This requires 
a greater knowledge of the inner workings of the models and their 

ecological interpretation. Bayesian methods can be computationally 
intensive; in our case, it took 230 min in a 16GB RAM 3.2Ghz 8- core 
laptop to run MCMC with 100,000 iterations. We used JAGS (an im-
plementation of BUGS; Lunn et al., 2000) to specify and fit the model 
since it is more flexible than, e.g., INLA (Rue et al., 2009) and also 
more didactical than, e.g., STAN (Stan Development Team, 2022). 
Spatial splines can be a particular challenge to code for JAGS, but 
the jagam function in the “mgcv” R package is enormously helpful 
for this. For more advanced users, however, the latter two may be 
more computationally efficient alternatives. Fortunately, code and 
data sharing are becoming more and more common. Understanding 
Bayesian IDMs can be challenging but hopefully, our analysis to-
gether with the commented code and the data will help to overcome 
these hurdles. We thus urge readers to pay close attention to our 
model's code (https://github.com/bienf loren cia/yagua rundi_IDM). 
It comes with a glossary of terms, extensive comments, and fur-
ther explanations, all aimed at providing the material that readers 
can reuse in their own projects. In this respect, we also recommend 
the excellent tutorials by Kéry (2010) and Kéry & Royle (2015, 2021) 
and McElreath (2020) together with the course (https://github.com/
rmcel reath/ stat_rethi nking_2022).

4  |  OUTLOOK

In the tropics and the global South, a lack of temporal data (i.e., data at 
the same location for different points in time) has always limited un-
derstanding of how species change their geographic ranges through 
time (Antonelli et al., 2018; Hortal et al., 2015). Most recent stud-
ies have focus on the temperate global North (i.e., North America, 
Europe, and Australia- New Zealand) (Chen et al., 2011). Even studies 
on the global scale, such as those based on the BioTime (Dornelas 
et al., 2018) or the Living Planet databases (Loh et al., 2005), have 
severe data gaps in the tropics. If there are any studies that cover 
the entire world (Pacifici et al., 2020), they rely on static geographic 
ranges (e.g., IUCN range maps), which in many regions tend to misrep-
resent actual species distributions (Hughes et al., 2021). Fortunately, 
unsystematic records from citizen or community- based science 
platforms are a growing source of presence- only data. Global initia-
tives such as iNaturalist (www.inatu ralist.org) have become popular 
in Latin America, with national nodes in Argentina, Chile, Colombia, 
Costa Rica, Ecuador, Guatemala, Panama, Mexico and Uruguay, now 
counting more than 2.6 million research- grade observations (GBIF.
org, 2022). These data have been deemed particularly problematic 
in the estimation of temporal trends of biodiversity and species geo-
graphic distributions (Peterson et al., 2011). However, with the type 
of IDMs that we present here, they can become a potentially valu-
able source for species distribution modelling in the region.
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