

Data integration to model species geographic range 5 dynamics The yaguarundí (Herpailurus yagouaroundi) in Latin America as a case study

Florencia Grattarola, Daiana E. Bowler and Petr Keil

ECOLOGICAL Anual Meeting 2022 | S27: Macroecology and Biogeography - Distributions

Faculty of Environmental Sciences

IDMs

Integrated species distribution models

• They assume a common underlying spatial point process that determines the spatial locations of individuals of a species.

unobserved true species distribution

locations of individuals

Isaac et al. (2020)

IDMs

Integrated species distribution models

- They assume a common underlying spatial point process that determines the spatial locations of individuals of a species.
- Multiple data emerge from a common set of ecological processes.

unobserved true species distribution

true site abundance

true site occupancy

IDMs

Integrated species distribution models

- They assume a common underlying spatial point process that determines the spatial locations of individuals of a species.
- Multiple data emerge from a common set of ecological processes.
- Through different observation processes, we obtain data that are imperfect representations of the truth.

Isaac et al. (2020)

IDMs Applications

ECOGRAPHY	Integrati species (
Research	Viviane Zulia
Integration of presence-only data from several sources: a case study on dolphins' spatial distribution	
Sara Martino*, Daniela Silvia Pace*, Stefano Moro, Edoardo Casoli, Daniele Ventura, Alessandro Frachea, Margherita Silvestri, Antonella Arcangeli, Giancarlo Giacomini, Giandomenico Ardizzone and Giovanna Iona Lasinio	
	SC
DOI: 10.1111/ddi.12631	
BIODIVERSITY RESEARCH WILEY Diversity and Distributions	
Using a novel model approach to assess the distribution and	
conservation status of the endangered Baird's tapir	ed: 12 April 2018 ed: 8 May 2019 ned online: 23 Ma
Cody J. Schank ^{1,2} Michael V. Cove ³ Marcella J. Kelly ⁴ Eduardo Mendoza ⁵	_
Georgina O'Farrill ^o Rafael Reyna-Hurtado' Ninon Meyer', ^o Christonber A. Jordan ^{2,9,10} Jose F. Conzález-Maya ¹¹ Diego I. Lizcano ^{12,13}	
Ricardo Moreno ^{8,14} Michael T. Dobbins ¹⁵ Victor Montalvo ¹⁶	
Carolina Sáenz-Bolaños ^{16,17} Eduardo Carillo Jimenez ¹⁶ Nereyda Estrada ¹⁸	
Juan Carlos Cruz Díaz ^{16,17} Joel Saenz ¹⁶ Manuel Spínola ¹⁶ Andrew Carver ¹⁹	
Jessica Fort ¹⁹ Clayton K. Nielsen ¹⁹ Francisco Botello ^{20,21} Gilberto Pozo Montuy ²²	<i>Ecology</i> , 102(1), 2021, e0
Marina Rivero ^{7,23} 💿 Jesús Antonio de la Torre ^{23,24} 💿 Esteban Brenes-Mora ^{25,26}	© 2020 by the Ecologica

Oscar Godínez-Gómez⁵ | Margot A. Wood^{27,28} | Jessica Gilbert²⁹ | Jennifer A. Miller¹

Received: 7 April 2021 Revised: 24 August 2021 Accepted: 5 September 2021 DOI: 10.1111/ddi.13416

EARCH ARTICLE

ecies distribution estimates

ane Zulian¹ 💿 | David A. W. Miller² 💿 | Gonçalo Ferraz¹ 💿

online: 23 May 2019

Diana E. Bowler¹, Erlend B. Nilsen¹, Richard Bischof², Robert B. O'Hara³, Thin Thin Yu⁴, Tun Oo⁵, Myint Aung⁵ & John D. C. Linnell

Ecology, 102(1), 2021, e03204 © 2020 by the Ecological Society of America

Integrating distance sampling and presence-only data to estimate species abundance

Biological Conservation 241 (2020) 108374

Contents lists available at ScienceDirec

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Integrating multiple data sources and multi-scale land-cover data to model the distribution of a declining amphibian

Jonathan P. Rose^{a,*}, Brian J. Halstead^a, Robert N. Fisher^b

^a U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Dr, Suite D, Dixon, CA 95620, USA ^b U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, 4165 Spruance Road, Suite 200, San Diego, CA 92101, USA

Integrating data from different survey types for population monitoring of an endangered species: the case of the Eld's deer

MATTHEW T. FARR (D, 1,2,4 DAVID S. GREEN (D, 1,2,3 KAY E. HOLEKAMP, 1,2 AND ELISE F. ZIPKIN (D1,2

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2014, 5, 751-760

doi: 10.1111/2041-210X.12221

Quantifying range-wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records

Jörn Pagel^{1,2}*, Barbara J. Anderson^{3,4}, Robert B. O'Hara⁵, Wolfgang Cramer⁶, Richard Fox⁷, Florian Jeltsch¹, David B. Roy⁸, Chris D. Thomas⁴ and Frank M. Schurr^{2,9}

Received: 25 November 2020 Revised: 8 February 2021 Accepted: 11 February 2021 DOI: 10.1111/ddi.13259

BIODIVERSITY RESEARCH

ersity and Distributions WILEY

Model-based integration of citizen science data from disparate sources increases the precision of bird population trends

Lionel R. Hertzog¹ | Claudia Frank^{2,3} | Sebastian Klimek¹ | Norbert Röder⁴ | Hannah G. S. Böhner⁴ | Johannes Kamp^{2,3}

Neotropical region Latin America

- One of the most important hotspots of biodiversity in the world.
- One of the areas where biodiversity is declining at higher rates.

Morrone (2017)

Yaguarundí Herpailurus yagouaroundi

Top: observed in Argentina by hhulsberg, and bottom: in Mexico by albamaya (iNaturalist.org)

Goal Yaguarundí's range dynamic

 Develop an integrated species distribution model (IDM) to model the temporal dynamics of the species' entire geographic range (over two time periods).

Methods

Species data Yaguarundí (2000-2021)

presence-only data

observed locations

GBIF.org (2022) https://doi.org/10.15468/DL.3CU474

• We removed records with a coordinate precision > 0.01 and a coordinate uncertainty > 25km. We also removed duplicated records.

9 @flograttarola | **1** ecoevo.social/@flograttarola

grid of 100x100 km over the study area

Species data Yaguarundí and other Neotropical carnivores (2000-2021)

Nagy-Reis et al. (2020) https://doi.org/10.1002/ecy.3128

We kept surveys that used camera traps and had info about the sampling area, the sampling effort, and the temporal span of the study.

9 @flograttarola | **2** ecoevo.social/@flograttarola

blobs of presence-absence (per time period)

0

Species data Yaguarundí

- The first period had 196 yaguarundi occurrence records, and the second 234.
- We used data from 8,346 surveys. The yaguarundí was recorded in 614.

@flograttarola | 🗭 ecoevo.social/@flograttarola

2000-2013 (pre)

20°N

10°N

10°S

20°S

30°S·

40°S

20°N

10°N

10°S

20°S·

30°S

40°S·

2014-2021 (post)

presence-only records presence-absence S urveys

Covariates data Climate, landcover, vegetation

We used a set of 28 potential covariates:

- Bioclimatic variables (WorldClim V2.1): bio1 bio19.
- Elevation (WorldClim V2.1 SRTM elevation data)
- Land cover (MODIS MCD12Q1): urban, • barren, water, savanna, wetland, grassland.
- Net Primary Production (NPP) (MODIS -M*D17A3HGF)
- Percentage of Vegetation cover (MODIS TERRA) - MOD44B): tree cover, no tree cover, non tree vegetation cover.

Thinning data

Presence-only observation process

We used:

 Accessibility: we expected that highly accessible grid cells would have more point records than inaccessible grid cells.

Weiss et al. (2020)

Thinning data

Presence-only observation process

We used:

- Accessibility: we expected that highly accessible grid cells would have more point records than inaccessible grid cells.
- **Country of origin**: differences in data-sharing capacities and citizen-science levels of engagement among countries.

Smoothing splinesSpatial component

- They model the spatial structure in the distribution that is not accounted for by the environmental covariates.
- We used the jagam function from the 'mgcv' package and k=9 spline basis variables.

·	·	·	·	•	·	•	·	•	•	•	•	•	•	•
														:
														•
														•
														•
														:
														•
·	•	·	•	•	·	·	·	·	•	•	•	•	·	•
·	·	·	•	•	·	1	•	·	1	1	1	1	•	•
														:
														•
														:
														:
														•
														:
	•		•	•	•	·	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•		•	•	
•	•		•	•	•	•	•	•	•	• •	•	•	•	
•	•	•	•	•	•	•	•	•	•]	•	•	•	
•	•	•	•	•	•	•	•	•	•]	•	•		
•	•	•	•	•	•	•	•	•	•]	•	•		
•	•	•	•	•	•	•	•	•	•					
	•				•	•	•	•	•			•	•	
F			·			•	•	•	•				•	
·			·			•		•				•		
F	C		r			•		•	•					
F	C)	r	t	•		•	•]				
Fe	C		r		•]]	· ·			
Fe	C)	r						•]]			•	
F	C		r		•	· ·	· ·	· · ·	· ·]]	· ·	· ·	•	
F	C		r		•		·		· ·		· ·		•	
F	C	·			•	· ·	· ·	· ·	· ·]]	· · ·		•	
F	C		r		· •	· ·	- -	· ·	· ·]]	· ·	· · · ·	•	
F		·	r		•	· ·	- -	· ·	· ·]]	•	· · ·	•	
F	C				·	· ·	-	•	•]]			•	
F		·			•	· ·	· ·	•	•]]				
F(·				•		· · ·	•					
				•		•	· · ·		•					
F(· · ·	•		•	•					
				• t	· · ·	•			•					
	C			•	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·					

The model Run

- jags function from the 'R2jags' package (to call JAGS from R)
 - 3 chains
 - 100,000 iterations per chain
 - 10,000 burning length
 - 10 as thinning rate

```
Raw Blame 🖉 - 🗗 🛈
97 lines (71 sloc) | 3.01 KB
    model
        # PRIORS
        ## Thinning at locations with complete accessibility in PO data
         # intercept of the decay function for each country of origin.
         # It needs a flat prior between 0 and 1
          for (c in 1:n.cntr)
            alpha0[c] ~ dbeta(1, 1)
11
12
13
14
         # steepness of the decaying distance-P.ret relationship in PO data
         alpha1 ~ dgamma(0.5, 0.05)
15
17
        ## Effect of sampling effort in PA data
         beta ~ dnorm(0, 0.01)
18
19
        ## Parametric effects of environment driving the point process intensity
20
        # (it also includes an intercept)
23
          for (r in 1:n.par)
            b[r] ~ dnorm(0,0.01)
-25
26
27
        ## Splines (imported and adjusted form output of mgcv::jagam)
28
-29
          ## prior for s(X,Y):as.factor(time)0
          sigma.pre <- S.pre[1:n.spl, 1:n.spl] * gamma[1] +</pre>
                S.pre[1:n.spl, (n.spl + 1):(n.spl * 2)] * gamma[2]
          b[(n.par+1):(n.spl + n.par)] ~ dmnorm(Z[(n.par+1):(n.spl + n.par)], sigma.pre)
          ## prior for s(X,Y):as.factor(time)1
          sigma.post <- S.post[1:n.spl, 1:n.spl] * gamma[3] +</pre>
               S.post[1:n.spl, (n.spl + 1):(n.spl * 2)] * gamma[4]
          b[(n.X - n.spl + 1):(n.X)] ~ dmnorm(Z[(n.X - n.spl + 1):(n.X)], sigma.post)
          ## Priors for smoothing parameter
          for (f in 1:n.fac)
            gamma[f] ~ dgamma(.5,.5)
            rho[f] <- log(gamma[f])
47
        # LIKELIHOOD ------
          ## --- Presence-Absence (PA) data ---
49
           eta.PA <- X.PA %*% b ## linear predictor
53
           for (i in 1:n.PA)
            # the probability of presence
            cloglog(psi[i]) <- eta.PA[i] + log(area.PA[i]) + beta*log(effort[i])</pre>
            # presences and absences come from a Bernoulli distribution
            y.PA[i] ~ dbern(psi[i]*0.9999)
61
62
          ## ---- Presence-Only (PO) data ----
          eta.PO <- X.PO %*% b ## linear predictor
65
          for (j in 1:n.PO)
            # cell-specific probability of retainin (observing) a point is a function of accessibility
           P.ret[j] <- alpha0[country[j]] * exp( (-alpha1) * acce[j])</p>
69
            # true mean number (nu) of points per cell i is the true intensity multiplied by cell area
            nu[j] <- area.P0[j] * exp(eta.P0[j])</pre>
            # thinning: the true lambda
            lambda[j] <- nu[j] * P.ret[j]
           # counts of observed points come from a Poisson distribution
           y.PO[j] ~ dpois(lambda[j])
78
79
80
81
        # PREDICTIONS ------
        eta.pred <- X.PO %*% b
83
84
85
        for (j in 1:n.PO)
86
87
         # predicted probability of occurrence in grid cell j
88
         cloglog(P.pred[j]) <- eta.pred[j] + log(area.PO[j])</pre>
89
90
        # DERIVED QUANTITIES -----
91
-92
93
        # area in each time period, and temporal change of area
        A.pre <- sum(P.pred[1:n.PO.half])
94
95
        A.post <- sum(P.pred[(n.PO.half+1):n.PO])
       delta.A <- A.post - A.pre
96
```

97

The model **Bayesian IDM**

 The data, code, model, outputs and more can be found at: https://github.com/bienflorencia/ yaguarundi IDM

Quick Model References

For more details please see here

Model term	Definition	Equation notation
n.PA	number of blobs for both time periods (pre and pos)	n _{PA}
i	index identifying blobs	i where $i \in 1: n_{PA}$
y.PA[i]	presence (1) or absence (0) value in each i-th blob (overlapping surveys' area), can be for pre- or post- period	y_{PA_i}
X.PA	design matrix including vector of 1s (for intercept) and all the covariates and spline bases for each blob, for both time periods	X _{PA}
area.PA[i]	area of i-th blob in meters for both time periods	area _{PAi}
effort[i]	sampling effort for i-th blob in the given period for both time periods	$effort_{PA_i}$
n.PO	number of grid-cells for both time periods concatenated (pre and pos)	n _{PO}
j	index identifying grid cells	$j \text{where } j \in j : \pi_{FO}$
n.PO.half	number of grid-cells for one time period	n _{PO/2}
y.PO[j]	count of observed points in j-th grid-cell, can be for pre- or post- period	Урој
X.PO	design matrix including vector of 1s (for intercept) and all the covariates and spline bases for each grid-cell for both time periods	X _{PO}
area.PO[j]	area of each grid-cell in meters for both time periods	area _{POj}
acce[j]	accessibility from urban areas based on travel time for j-th grid-cell for both time periods	acce _j
country[j]	country name for j-th grid-cell for both time periods	$country_j$
n.X	total number of columns in X ('X.PA' or 'X.PO')	n _X
n.cntr	total number of countries	n _{entr}
с	index identifying countries	$c where c \in I: n_{curr}$
n.par	number of parameters considered (intercept and covariates)	npar
r	index identifying parameters	r where $r \in 1: n_{pw}$
n.fac	number of factors of time in X ('X.PA' or 'X.PO')	n _{fac}
f	index identifying factors	f where $f \in I : n_{fac}$
n.spl	number of spline bases functions in in X (`X.PA` or `X.PO`)	n _{spl}
S.pre	spline values for the first time period (pre)	Spre
S.post	spline values for the second time period (post)	Spost
z	a vector of zeros (0) of the length of the splines	Z
sigma.pre	variance of splines for the first time period (pre)	σ_{pre}
sigma.post	variance of splines for the second time period (post)	σ_{post}
b	vector of parametric effects of covariates driving the point process intensity (it also includes an intercept)	$b_r \in \mathbf{b}$
alpha0	intercept of the thinning process in the presence-only data	α ₀
alhpa1	slope -steepness- of the thinning process in the presence-only data (decaying distance~P.ret relationship)	α_1
beta	coefficient of the effect of sampling effort in the presence-absence data	β
gamma	prior for splines smoothing parameter	γ
eta.PA	linear predictor for presence-absence data	η_{PA}
eta.PA[i]	expected presence-absence for the i-th blob	η_{PA_i}
eta.PO	linear predictor for presence-only data	η_{PO}
eta.PO[j]	expected count points for the j-th grid-cell	η_{PO_j}
psi[i]	blob-specific probability of presence	ψ_i
P.ret[j]	cell-specific probability of retaining (observing) a point as a function of accessibility and country of origin	P _{retj}
nu[j]	true mean number of points per grid-cell (the true intensity)	ν_j
lambda[j]	thinning of the true intensity	λ_j
eta.pred	linear predictor for the predicted probability of occurrence	η _{pred}
eta.pred[j]	predicted count points for the j-th grid-cell	η_{pred_j}
P.pred[j]	predicted probability of occurrence for the j-th grid-cell	Ppredi
A.pre	range area in the first time period (pre)	Apre
A.post	range area in the second time period (post)	Apost

Results and Discussion

9 @flograttarola | **1** ecoevo.social/@flograttarola

Species range **Temporal change**

 Retracted from the southern range limit in Argentina, Uruguay and Paraguay and the northern limit in Mexico.

Species range Temporal change

- Retracted from the southern range limit in Argentina, Uruguay and Paraguay and the northern limit in Mexico.
- Maintained its presence in central and southeast Brazil.

Species range Temporal change

- Retracted from the southern range limit in Argentina, Uruguay and Paraguay and the northern limit in Mexico.
- Maintained its presence in central and southeast Brazil.
- Expanded at Brazilian and Colombian Amazon, near the Caatinga region of north-eastern Brazil and the border of Mexico with Guatemala.

Conclusions

Conclusions **IDMs - Temporal change**

 Data integration enabled us to increase each period's sample size, geographic extent, and environmental scope.

Observed by alexcg223 (iNaturalist.org)

Conclusions IDMs - Temporal change

- Data integration enabled us to increase each period's sample size, geographic extent, and environmental scope.
- We were able to estimate the temporal change in the species' geographic range even over a relatively short time span while accounting for sampling bias and spatial autocorrelation.

Observed by alexcg223 (iNaturalist.org)

Conclusions

IDMs - Most up-to-date knowledge

• We have updated the knowledge represented by the IUCN expert's range map.

Observed by ddavilareyes (iNaturalist.org)

Conclusions

IDMs - Most up-to-date knowledge

- We have updated the knowledge represented by the IUCN expert's range map.
- Many global studies rely on these sorts of maps; thus, they need to be more accurate. IDMs can be a solution to improve them.

Observed by ddavilareyes (iNaturalist.org)

What's next?

 Better predictions - Should we increase the number of splines? Correct predictions by including experts' range maps as offsets? (Merow et al. 2016)

- **Better predictions** Should we increase the number of splines? Correct predictions by including experts' range maps as offsets? (Merow et al. 2016)
- Spatial component How to model spatial autocorrelation in JAGS/NIMBLE: are there any practical solutions other than splines?

- **Better predictions** Should we increase the number of splines? Correct predictions by including experts' range maps as offsets? (Merow et al. 2016)
- Spatial component How to model spatial autocorrelation in JAGS/NIMBLE: are there any practical solutions other than splines?
- Changes over time in climatic variables How to include the temporality of covariates: are there any products available for Latin America?

- Better predictions Should we increase the number of splines? Correct predictions by including experts' range maps as offsets? (Merow et al. 2016)
- Spatial component How to model spatial autocorrelation in JAGS/NIMBLE: are there any practical solutions other than splines?
- Changes over time in climatic variables How to include the temporality of covariates: are there any products available for Latin America?
- Interaction with other species How to model co-occurrence effects: can we upgrade our model to model more than one species jointly?

What's next? **Challenge: increase data available in Latin America**

Engage more community-science users, i.e., through iNaturalist.

NaturalistaUY

What's next? **Challenge: increase data available in Latin America**

- **Engage more community-science users**, i.e., through iNaturalist.
- **Digitise new camera trap studies**, i.e., literature and community science initiatives.

NaturalistaUY

Thanks!

Florencia Grattarola, **Daiana E. Bowler** and Petr Keil

Integrating presence-only and presence-absence data to model changes in species geographic ranges: An example of yaguarundí in Latin America (**2022**) *EcoEvoRxiv*.

https://doi.org/10.32942/osf.io/67c4u

Acknowledgement

REES (Research Excellence in Environmental Sciences) grant from the Faculty of Environmental Sciences, Czech University of Life Sciences in Prague.

Credits

Photos by Hugo Hulsberg (CC-BY-NC), albamaya (CC-BY-NC), Christoph Moning (CC-BY), Bernard Foy (CC-BY-NC), Scott Ramos (CC-BY-NC), drewdavis74 (CC-BY-NC), ddavilareyes (CC-BY-NC), alexcg223 (CC-BY-NC) - iNaturalist. Silhouettes by Gabriela Palomo-Muñoz (CC BY-NC) and Margot Michaud (CC0) -PhyloPic.

🕀 <u>flograttarola.com</u> | GitHub <u>github.com/bienflorencia</u> | 🕑 @flograttarola | 💬 ecoevo.social/@flograttarola |

